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Abstract—Wireless data communications are always facing the
risk of eavesdropping and interception. Conventional protection
solutions which are based on encryption may not always be
practical as is the case for wireless IoT networks or may soon
become ineffective against quantum computers. In this regard,
Physical Layer Security (PLS) presents a promising approach to
secure wireless communications through the exploitation of the
physical properties of the wireless channel. Cooperative Friendly
Jamming (CFJ) is among the PLS techniques that have received
attention in recent years. However, finding an optimal transmit
power allocation that results in the highest secrecy is a complex
problem that becomes more difficult to address as the size of
the wireless network increases. In this paper, we propose an
optimization approach to achieve CFJ in large Wi-Fi networks
by using a Reinforcement Learning Algorithm. Obtained results
show that our optimization approach offers better secrecy results
and becomes more effective as the network size and the density
of Wi-Fi access points increase.

Index Terms—Artificial Noise, Secrecy, Physical-Layer Secu-
rity, SDN, Programmable Networks, Friendly Jamming, Rein-
forcement Learning, Machine Learning.

I. INTRODUCTION

The pervasive and broadcasting nature of electromagnetic

waves in wireless networks poses a significant risk of unau-

thorized access and interception of sensitive data. Although

encryption and authentication are common security measures,

Physical Layer Security (PLS) is increasingly being recog-

nized as a promising approach to provide an additional layer

of protection to wireless communications [1]. However, until

recently PLS was primarily restricted to theoretical study of

the problem.

We have shown in [2], [3] that PLS could indeed be

realized by exploiting the flexibility offered by Software-

Defined Networking (SDN) and Spectrum Programming [4].

In our previous work, we have shown that it is possible to

implement a PLS solution for Wi-Fi networks using off-the-

shelf equipment [2], [3]. In these works, we implemented

an algorithm that associates the legitimate station to the

Access Point (AP) that provides the highest secrecy capacity

in the presence of an eavesdropper [5]. We extended these

works in [6] by incorporating the idea of cooperative friendly

jamming (CFJ), where APs produce jamming signals to further

degrade the capacity of eavesdropping. However, this work

was limited to a single user, a single eavesdropper, and two

APs. The optimization formulation and closed-form equations

presented in [6] are not scalable to more realistic scenarios that

include multiple APs, legitimate stations, and eavesdroppers.

In this paper, we extend our contribution in [6] to larger

wireless networks, where APs can work as both legitimate

traffic sources and jammers at the same time. More specif-

ically, we aim to optimize the transmit power of each AP

that results in the maximum achievable sum secrecy capacity

across legitimate users. For this purpose, we propose to use

a Reinforcement Learning (RL) technique within Machine

Learning (ML) to find a near-optimal radio configuration.

In our proposed RL framework, the state of the network is

the location of nodes, which underpins the received power at

each legitimate or eavesdropper node according to the assume

wireless propagation path-loss model. The action taken is the

transmit power from each AP and the revenue is the sum

secrecy capacity among legitimate users. Numerical evaluation

of our proposed RL method in numerous network scenarios

shows significant sum secrecy capacity improvement across

the network.

The rest of the paper is structured as follows. In Section II,

the related work is presented briefly. Section III formulates the

proposed CFJ, optimization problem, and the reinforcement

learning model, followed by simulation results in Section IV.

Finally, we conclude the paper and discuss the future work in

Section V.

II. RELATED WORK

The application of ML to wireless communications has

gained significant interest over the last few years [7]. Several

ML-based solutions have been proposed in the literature to

help address issues such as spectrum sensing [8], RF coexis-

tence [9], and RF transmitter identification [10]. In the context

of jamming, contributions focused only on proposing ML-

based solutions to detect jamming attacks and their perpetra-

tors [11]–[13]. Authors in [14] proposed to identify possible

ML techniques that could be applied to PLS, but focused

on Physical Layer Authentication, Antenna Selection, and

Relay Node Selection. In [15], authors proposed an ML-based

PLS to secure communications between Intelligent Reflecting

Surfaces and Mobile Edge Computing nodes. In [16], authors

proposed a federated learning framework to enhance PLS



where part of the model aims to optimize the transmit power

to reduce the eavesdropping opportunity.

In addition, all contributions mentioned above were limited

to theoretical models. Our works in [2], [3] were the first

implementation of PLS in wireless networks. In these works,

we presented an implementation of a PLS solution where a

legitimate station is associated with the AP that offers the

highest secrecy in the presence of an eavesdropper. The choice

of the AP is based on the algorithm we proposed in [5]

and the implementation exploits the spectrum programmability

concept presented in [4]. In [6], we extended our previous

work by proposing a friendly jamming method that improves

the secrecy of wireless communication in the presence of

an eavesdropper. In [6], we used an optimization model that

determines the transmit power that a jamming AP should use

to improve the secrecy capacity of the connection. However,

this model could only be applied to a scenario that involves

two APs and one legitimate user and could not scale to

larger deployment scenarios. In this current study, we improve

upon this model by proposing a more comprehensive wireless

network solution that can enhance PLS through CFJ. We

employ Reinforcement Learning [17] to determine the best

power allocation to APs. Most existing works on power

optimization, such as [18], [19], considered a limited point-to-

point scenario (i.e., Alice-Bob communication). To the best of

our knowledge, there is no previous work on joint optimization

of user association and power allocation for a scenario with

multiple APs and jammers. Therefore, the results in our work

aim to show the superiority of the proposed model to existing

systems in the real world or those proposed in the literature.

Furthermore, as far as we know, this is the first research to

propose and solve this model using reinforcement learning.

III. SYSTEM MODEL

A. Proposed Friendly Jamming Formulation

Let us assume a network that includes N APs (AP1, AP2,

. . . , APN ), K users as u1, u2, . . . , uK , and J eavesdroppers

as e1, e2, . . . , eJ , which are located in the area that is serviced

by a cooperative wireless network. Each user uk is associated

with APαk
, where A = [α1, . . . , αK] is a vector that denotes

the association of users to APs and P t = [pt1, . . . , p
t
N ] is a

vector that represents the transmit power of each AP. APs

transmit signals continuously. If there is an associated user

to receive data they act as a normal AP and otherwise as a

jammer. A simple network with N = 4, K = 2 and J = 2 is

illustrated in Figure 1.

We consider the Friis transmission formula [20] for the

wireless propagation model where for a transmit power of pt,

the received power at distance d is calculated by

pr = ptGtGr(
λ

4π
)2(

1

d
)γ , (1)

where Gt and Gr are antenna gain for the transmitter and re-

ceiver respectively, λ is the wavelength of the radio frequency

and γ is the path loss exponent. The received power at uk

and ej from APn are denoted by prun,k and pren,j , respectively.

AP4

AP1 AP2

AP3
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Figure 1: In a cooperative wireless network, user1 and user2 receive
downlink traffic from AP1 and AP3, respectively (shown by green
dotted lines). However, Eve1 and Eve2 are eavesdropping on their
traffic (indicated by red dotted lines). Additionally, AP2 and AP4 are
idle and act as jammers. It is important to note that all APs and
users communicate in the same frequency band. As a result, AP1’s
signal can also be considered as jamming signal for any eavesdropper
wiretapping AP3’s traffic, and AP2’s signal can also be considered
as jamming signal for any eavesdropper wiretapping AP1’s traffic.

Therefore, the Shannon capacity [21] of the downlink channel

between APn and the legitimate user uk is given as

Cn,k = W log(1 + SINRn,k)

= W log

(

1 +
prun,k

∑N
ν=1,ν ̸=n p

ru
ν,k +Nuk

)

,
(2)

where W is the channel bandwidth, SINRn,k is the Signal-

to-Interference-plus-Noise Ratio (SINR) at uk from APn and

Nuk
is the noise power at uk. Similarly, the Shannon capacity

of the channel between APn and the eavesdropper ej is

Ce
n,j = W log(1 + SINRn,j)

= W log

(

1 +
pren,j

∑N
ν=1,ν ̸=n p

re
ν,j +Nej

)

,
(3)

where SINRn,j is the SINR at ej from APn and Nej is

the noise power at ej . In this paper, all logs are in base 2

and, therefore, capacities are measured in bits/s. Equation (3)

shows all other APs contribute to the jamming and reduce

the eavesdropper capacity, regardless of whether the AP is

functioning as a jammer or transmitting data to users. We

assume there is no collusion among eavesdroppers. In this

paper, we consider the wiretap capacity [22] as the PLS

performance metric, which is widely studied in the literature,

e.g., see [23] for an early work and [24] for more recent

results. Also, let us assume the worst-case scenario when the



eavesdropper with the highest capacity is wiretapping. The

maximum capacity among all eavesdroppers to wiretap the

traffic transmitted by APn is defined by

Ce(n) = max({Ce
n,j : j = 1, . . . , J}). (4)

Assuming the user uk is associated with APαk
, the secrecy

capacity for the user uk is given by

Cs(uk, αk) = [Cαk,k − Ce(αk)]
+, (5)

where [x]+ denotes max{x, 0}. In this paper, we aim to find

the joint optimal user association and power allocation to the

APs that maximize the sum of the secrecy capacity of all

legitimate users, which the optimization problem is formulated

as follows

Ψ : max
P t,A

(

K
∑

k=1

Cs(uk, αk)),

s.t. 0 ≤ ptn ≤ pmax,

αk ∈ {1, 2, ..., N},

(6)

where A := [α1, . . . , αK]. Solving this joint optimization

problem is a difficult task due to the non-linear and non-

convex nature of secrecy capacity expression [25] where the

user association optimization adds extra complexity. In this

paper, we propose to decouple the original problem into two

subproblems. First, we employ the AP selection algorithm

from [2], [5] where each user uk is associated with APαk
that

provides the maximum secrecy capacity Cs(uk) considering

eavesdropper locations and a uniform power allocation to APs

(i.e., ptn = pmax). That is, the association index αk for user

uk is obtained by

αk = arg max
n∈{1,2,...,N}

(Cn,k − Ce(n)). (7)

Then, we use this user association A = [α1, . . . , αK] and

formulate the optimization of the power allocation of APs by

Φ =arg max
P t=[pt

1
,...,pt

N
]
(

K
∑

k=1

Cs(uk, αk)),

s.t. 0 ≤ ptn ≤ pmax,

(8)

which is still a non-convex problem. To solve this, We employ

Deep Reinforcement Learning that maximizes the sum secrecy

capacity. This approach lets us extend this solution in our

future works to consider user mobility or channel selection.

B. Proposed Reinforcement Learning Model

Since the wireless network is controlled by software, APs,

and stations’ information are available for the controller’s

software that can be used to control the network globally [4].

Therefore, the reinforcement learning model for our proposed

system is defined as follows:

• State (S) is defined based on the observed information

of the environment that includes the location of users,

eavesdroppers, and APs. Thus, we define the state as S =
{LAP , Lu, Le} where LAP = [lAP1, lAP2, . . . , lAPN ]

is a vector that denotes the location of APs, Lu =
[lu1, lu2, . . . , luK ] typifies the location of user stations,

and Le = [le1, le2, . . . , leJ ] represents the location of

eavesdroppers.

• Action (a) is defined as the vector of transmit power of

APs: P t = [pt1, . . . , p
t
N ].

• Revenue (R) is the combination of rewards and penalties

after taking action a at state S. In our model, we

only consider a reward for the sum of positive secrecy

capacities among users:

R(S,a) =
K
∑

k=1

Cs(uk, αk). (9)

This paper utilizes the Soft Actor-Critic (SAC) algorithm

[17], which is an off-policy approach resulting in a stochastic

policy for optimal actions. The SAC algorithm’s main advan-

tage is the ability to balance exploration and exploitation,

which the model can adjust during training to prevent the

policy from converging too early to an undesirable local

optimum [26].

IV. PERFORMANCE EVALUATION

We evaluated the performance of the proposed RL-based

CFJ model using simulations with Matlab. We simulated three

Wi-Fi systems: a) a normal Wi-Fi implementation where

the user is associated with the AP with the highest SINR

regardless of the eavesdroppers’ location and eavesdropping

capacity; b) the smart AP implementation where the user

is associated with the AP that provides the highest secrecy

capacity according to (7) (but without any power optimiza-

tion); and c) The RL-Based CFJ implementation where each

AP can work as a source of legitimate traffic or jamming to

increase the secrecy of communication according to (7) and

(8) where its transmit power is optimized. In more detail,

each AP is sending either data frames or jamming signals

continuously. If APs associate with more than one user, time

division multiplexing will be used. However, instantaneous

capacity is considered for secrecy. As shown in (3), each AP

can contribute to the friendly jamming effectiveness against

eavesdropping on other AP’s traffic. In the normal Wi-Fi (a)

and smart AP (b) implementation, the transmit power of every

AP is set to 1 watt, and the idle APs (not associated with

any legitimate user) are neither transmitting data traffic nor

jamming. The RL-based (c) implementation firstly employs (7)

to select the AP for each user assuming the transmit powers

are maximum across APs and then optimizes transmit powers

to achieve the maximum sum secrecy capacity. The optimal

transmit power is limited to a maximum of 1 Watt.

The map considered for the simulations has dimensions of

50m × 50m, where all coordinates are expressed in meters

(m). Users and eavesdroppers were randomly located, and the

APs were placed sufficiently far from each other to cover the

entire map area. The communication between users and APs

is conducted over Wi-Fi operating at f0 = 2.4 GHz. The noise

power at all nodes was set to N = Nm = Ne = −85 dBm =
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(a) scenario 1: 4 APs.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Access points

User STA

Evesdroppers

(b) scenario 2: 5 APs.
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(c) scenario 3: 5 APs.
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(d) scenario 4: 7 APs.
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(e) scenario 5: 9 APs.
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(f) scenario 6: 13 APs.

Figure 2: These figures display the locations of users, eavesdroppers, and APs in various scenarios. Scenarios 3, 4, 5, and 6 involve identical
numbers and locations of users and eavesdroppers, with only new APs being introduced.

3.16×10−12 Watts. We assumed a path-loss exponent of γ = 2
for the entire map. To simulate the environment and train the

RL agent, we used Matlab’s Reinforcement Learning Toolbox.

The action, as defined in Section III-B, was implemented as a

continuous space. The map was divided into 1m×1m cells to

discretize the observation space and limit possible states. The

deep learning networks for the SAC agent’s critic and actors

comprised nine layers of depth and 32 to 256 hidden units,

depending on the number of APs.

In order to investigate the impact of the user node and AP lo-

cation on our system, we conducted simulations of six different

scenarios, as presented in Figure 2. Scenarios 3 to 6 featured

the same number of users and eavesdroppers, all located in the

same positions. However, the number of APs varied, increasing

from 5 in scenario 3 to 7, 9, and 13 in scenarios 4, 5, and 6,

respectively. This allowed us to explore the effects of more

densely deployed APs on our system. For each scenario, we

simulated the three implementations of normal Wi-Fi, smart

AP and RL-based CFJ as described above. For the results, we

calculated a) sum secrecy capacity
∑K

k=1 max(Cs(uk, αk), b)

sum Eve capacity where the capacity of each eavesdropper is

the highest eavesdropping capacity on K users according to (4)

and c) the secrecy ratio, which we define as the percentage of

users that can achieve positive secrecy capacity. The capacities

are shown for W = 1 Hz or equivalently bit per second per

hertz (bps/Hz). The antenna gains at the transmitter, Gt, and

the receiver, Gr, are assumed to be unity.

The results are visualized as in Figure 3. It can be observed

that the RL-based CFJ outperforms the normal Wi-Fi and

smart AP implementations in all scenarios, achieving a higher

sum secrecy capacity. Please note that the revenue function

in (9) only rewards the sum secrecy capacity according to

(6) and there is no explicit penalty for eavesdropper’s ca-

pacity in this equation. Nevertheless, such RL method also

manages to achieve a lower eavesdropping capacity for most

scenarios. To demonstrate the distribution of secrecy capacity

improvement among users, we presented another group of bar

charts depicting the percentage of secrecy ratio in Figure 3.

The results clearly show that the proposed RL-based model

outperforms the other two implementations. Moreover, the

smart AP implementation also shows better performance than

normal Wi-Fi as the latter does not take into account the PLS

in any form.

The second scenario results are distinct in the sense that we

can see for all the implementations, the secrecy ratio is 100%.
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Figure 3: Results for different scenarios for 3 different implementations. Rl-based CFJ can generally outperform other implementations.
Scenarios 3, 4, 5, and 6 involve identical numbers and locations of users and eavesdroppers, with only new APs being introduced. Therefore,
secrecy can be improved by deploying more APs. Although scenario 5 is expected to perform as well as or better than scenario 4 for
RL-based CFJ, the results show a slight downgrade. This is because the AP selection algorithm is run separately from power optimization
and before it.

This is due to the eavesdroppers’ location, where almost all

users are closer than the eavesdroppers to at least one AP. This

leads to positive secrecy for all users in all implementations

where the smart AP selection as presented in (7) results in

the same selection as normal Wi-Fi (where the closest AP is

simply selected).

In the third scenario, there is an increase in both the

number of users and eavesdroppers, leading to a significant

increase in eavesdropping capacity and a decrease in secrecy

ratio. RL-Based power optimization also cannot improve the

secrecy capacity notably. However, by adding two more APs to

scenario 3 and keeping the same number and location for users

and eavesdroppers, it can be observed in scenario 4 that there

is a significant improvement in the results. The proposed RL-

based implementation remarkably outperforms the other two

approaches.

However, by adding two more APs in scenario 5, the

sum secrecy capacity is slightly lower and the eavesdropper

capacity increases for RL-based results. This was unexpected,

given that we anticipated achieving at least the same level of

performance as scenario 4. Our investigation revealed this is

because some users are now associated with newly added APs.

We conclude that since the AP selection algorithm is done

separately and first, by assuming uniform power allocation,

and then the RL model is used to find the optimal power

vector, the whole process is not optimal. This should be

improved by integrating the AP selection in the RL model in

future work. Generally speaking, we can conclude that having

a more dense AP deployment improves the secrecy of users

as can be seen in scenarios 3 to 6.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an optimization solution for

the transmit power allocation, necessary to achieve CFJ in

large Wi-Fi networks, by leveraging the Soft Actor-Critic

RL agent methodology within reinforcement learning. The

obtained results show that the proposed solution enhances the

secrecy of wireless communication in the presence of multiple

eavesdroppers. Furthermore, we found that a higher density of

APs generally offers more opportunities to improve the secrecy

of communication.

These results demonstrate the effectiveness of ML in ad-

dressing the complex problem of transmit power optimization

of friendly jamming to achieve PLS. They also showcase the

potential of ML in addressing other optimization problems in

PLS that could not be solved with conventional theoretical or

numerical optimization methods. More specifically, we aim to

integrate the AP selection algorithm into the RL model in our



future work, to further optimize the secrecy of the wireless

network. Finally, we are also considering the extension of

this work to mobile legitimate stations and eavesdroppers,

by training the RL model to the dynamic environment and

mobility patterns that characterize large Wi-Fi networks.
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