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Abstract—Dynamic Adaptive Streaming over HTTP (DASH) is
one of the most widely used adaptive streaming technique for
watching online video content. DASH adapts to the varying net-
work conditions by selecting the appropriate bitrate of the video
stream. The bitrate adaptation is typically done by monitoring the
playback buffer level and/or the network condition on client side.
In this paper we empirically evaluate our JavaScript DASH player
in which, Markov Decision Process (MDP) has been considered
as the underlying optimization framework. This player uses Q-
learning algorithm to learn the model and optimize the Quality
of Service (QoS) after multiple streaming sessions. The basic
JavaScript DASH player developed by DASH Industry Forum
(DASHIF) is used as a benchmarking model in our evaluations.
We use Google Chrome’s 3G and 4G network emulators in
our experiments and show that our MDP-based DASH player
significantly outperforms the DASHIF player which uses buffer
control and rate adaptation techniques simultaneously. Using real-
time experiments, we show that for similar picture quality we can
achieve about 18x fewer deadline misses and 5x fewer quality
switches over a 3G network and 32x fewer deadline misses and
1.6x fewer quality switches over 4G.

I. INTRODUCTION

In recent few years we have witnessed an enormous growth
of mobile data traffic all around the world. According to
CISCO’s report [1], at the end of 2014, the global mobile
data traffic grew 69% compare to 2013. Considerable growth
of cellular connection speed (e.x., 20% from 2013 to 2014) as
well as the increasing capability of smart devices is enabling
consumers to watch more multimedia contents while on move.
Based on this report, the mobile video traffic exceeded 50%
of the total mobile data traffic in 2012 and it is expected to
increase to 72% by 2019.

Despite the improvements in peak data rates, the received
mobile signal strength and therefore the available bandwidth
in different times and locations are unstable and unpredictable.
This severely affects the QoS of multimedia streaming on mo-
bile devices, thus presenting an important challenge for content
providers and network operators. To tackle this problem, a
new standard for video streaming has recently emerged called
Dynamic Adaptive Streaming over HTTP (DASH) [2]. The
main concept of DASH is to encode the video files using
multiple quality levels (bitrates) and store them as a series
of small chunks which are typically 2-10 seconds in length.
To maximize the QoS under varying network conditions, the
streaming client fetches the most appropriate quality level
for a given video chunk by using the standard HTTP GET

command. An incorrect quality selection may cause deadline
miss (if the available bandwidth cannot support the requested
bitrate) or result in a lower quality stream being played out
(if the available bandwidth is significantly greater than the
chosen bit rate). It therefore becomes the DASH client’s
responsibility to dynamically select the ’right’ quality for the
next video chunk in order to have a smooth playback with the
highest possible quality while also minimizing frequent quality
switches. Providing such a streaming strategy, i.e., the client
intelligence for maximizing the quality of experience (QoE) is
left to the developers.

Most of the state-of-the-art streaming strategies [3], [4]
monitor the client’s buffer level and network throughput for
selecting the appropriate streaming quality. Although these
methods perform reasonably well, they do not optimise the
trade-off between individual QoE metrics such as picture
quality vs deadline miss, especially in vehicular environments
which exhibit significant uncertainty in network bandwidth.

The primary goal of this paper is on extensive performance
evaluation of our proposed DASH player in [5]. This model
enables the streaming client to learn from experience how
to select the most appropriate quality level for next video
chunk in different circumstances. Q-learning [6] which is a
well known model-free reinforcement learning technique to
solve any given finite Markov decision process (MDP) [7]
has been used as the underlying optimization framework in
our player. In this model, after receiving each video chunk,
consequence of selecting the latest quality level is recorded in
a table called Q-table. Such a massive knowledge is then used
to select the best possible quality in different conditions. We
demonstrate that in practice and after Q-table is converged, our
player outperforms the basic DASH player by missing 18x and
32x less deadlines on 3G and 4G networks respectively while
minimizes the quality fluctuates by factors of 5 and 1.6.

The rest of the paper is organised as follows. Related works
are discussed in Section II. In Section III we discuss the basic
JavaScript DASH player and how we modified it to use MDP
streaming strategies. In Section IV, we explain our experiment
setup and the results are presented in Section V. We finally
conclude the paper in Section VI.

II. RELATED WORKS

Improving the quality of service (QoS) of HTTP-based
adaptive video streaming has been the main focus of many
researchers in recent few years. Using sender-driven rate adap-
tation [8] is one of strategies that has been frequently explored
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by researchers. Our study is related to the receiver-driven rate
adaptation [4] which enables the client devices to control the
streaming quality. With minor differences, the majority of such
strategies consider certain buffer level thresholds for switching
the quality level Up or Down. As such, these strategies are
often slow to react to sudden changes in network conditions.
In this paper we consider not only the buffer level occupancy
but also other effective parameters such as number of deadline
miss and quality changes to maximize the streaming quality.

Researchers used online network observation or historical
bandwidth traces to predict or estimate the available through-
put during fetching the next video chunk. In [9] and [10],
researchers found that bandwidth can vary severely in different
locations. In our previous studies we also found using location-
based bandwidth statistics significantly improves the QoS in
video streaming [11], [12]. However, none of these approaches
considered learning from streaming sessions that is used in this
paper.

In [13] and [14], researchers have modelled the decision
making system in adaptive multimedia streaming as MDP
problem. Cuetos et al. [15] also used MDP to optimise the
scheduling and error concealment simultaneously in layered
video. However, non of these studies used Q-learning algo-
rithm to solve their MDP models which enables the streaming
clients to learn from multiple streaming sessions and optimize
the streaming performance.

In this paper, we discuss our implemented MDP-based
JavaScript DASH player as well as the empirical testing
results. We use Google Chrome’s network emulator to em-
pirically evaluate our DASH player and demonstrate how it
significantly outperforms the basic DASH-player which uses
buffer control and rate adaptation techniques for the bitrate
adaptation.

III. JAVASCRIPT DASH PLAYERS

The DASH Industry Forum introduced a JavaScript DASH
player in which the optimization is done based on monitoring
the available bandwidth as well as buffer occupancy level
[16] at the client. In this work, We have modified the quality
selection module of this player in a different way to employ
our MDP-based rule as well as for benchmarking other DASH
players (i.e., random and deterministic quality selection). In
the following we briefly explain how the basic and MDP-based
DASH players work.

A. Basic DASH player
The algorithm used by DASH Reference Player considers

two parameters for making decisions on bitrate adaptation:
Buffer level and possible download ratio. In this player, a
download ratio µ is computed by dividing the video chunk
duration VCD by its fetching time CFT multiplied by a
constant called safety factor (φ) as:

µ =
V CD

CFT
× φ (1)

The safety factor φ which can vary between 0 and 1 is
set to 0.75 by default to ensure that player behaves more

conservatively and there is sufficient bandwidth before initating
the switch up action. If the resulting µ is greater than 1, then
the algorithm will decide to switch up to a higher bit rate.
Otherwise it will initiate the switch down action. In addition,
the player has to avoid an interruption to the stream (i.e.
deadline miss). Thus regardless of the download ratio, if the
buffer level is less than a certain threshold, the player will
chose to take the switch down action.

B. MDP-based DASH Player
The goal of MDP is to obtain a policy which returns the best

possible action to take when a particular state is observed.
To obtain such an optimal policy, we consider Q-learning
algorithm in this work. To get better insights of our model,
we first explain MDP formulation of DASH then we discuss
how Q-learning model enables the streaming clients learn from
multiple streaming sessions to maximize their QoE.

1) MDP Formulation of DASH: Our MDP model is charac-
terized by a tuple (S,A,Rsa, γ)

1, where S is a set of states,
A is a set of actions, Rsa is the immediate revenue for taking
action a in state s, and γ = [0, 1) is a discounting factor for
the revenues collected from future actions and states.

System states and decision timings: We observe the system
state when a video chunk is completely downloaded. The
system state S(ρ, q) is jointly represented by the quality level
(q) of the downloaded chunk and the amount of time available
(ρ) before its playback deadline. There is a deadline miss
if the chunk download is not completed before its deadline
(ρ < 0), in which case the video is frozen for a while until the
chunk is downloaded, and it is played immediately at that time.
Therefore, for a deadline miss, ρ is considered zero instead of
negative.

If there is not enough space remaining in the buffer for
another chunk after storing a downloaded chunk, the decision
making and start of downloading the next chunk stall until
there is enough room in the buffer. The value of ρ therefore
assumes the value at the time of decision making (when there
is space in the buffer) instead of when the last chunk was
downloaded. This provides an upper bound for ρ, which is
basically controlled by the buffer length. For example, if we
have a buffer with a capacity to hold 7 chunks each 2 seconds
long, then the upper bound for ρ is 14 seconds. Note that
chunks have different sizes based on the quality while in most
practical systems a buffer will have a maximum size in terms
of bytes. One way to address this issue would be to configure
the buffer length in bytes using the maximum chunk size, but
measure buffer occupancy in units of chunks stored in the
buffer.

Although ρ is a continuous number between zero and upper
bound, we propose to use a discrete interval system to achieve
a finite number of MDP states. We divide each second into
n intervals and use an integer to represent the value of ρ.
For example, for a 7-chunk buffer holding only 2-sec chunks,
n = 2 would give us 7× 2× 2 = 28 different values for ρ.

Actions: At each state, the decision taken is referred to as an
action. For our adaptive HTTP streaming system, an action is

1Transition probability is not required with our model-free MDP.
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basically a decision about the quality level for the next chunk.
If we have N quality levels to choose from, then we have N
possible actions.

Revenue function: The Revenue function R(s, a, s′) uses
some rewards and penalties to evaluate the outcome when
action a′ is chosen at state (s, a):

R(s, a, s′) = u(a′)−D (2)

where u(a′) is a reward to watch a chunk in quality a′ and
D is a penalty if a deadline is missed [5]. Note that u(a′)
can be derived immediately from predefined tables without
observing or knowing the next state. The deadline miss penalty
D, however, is driven after observing the next state as follows:

D =

{
0 if no deadline miss

DM otherwise
(3)

where DM is a constant that can be used to tune the MDP
model.

2) Q-learning Algorithm: In this technique, a Q matrix
which defines the values of every state s if action a is taken
is initialised with zero [17]. Whenever the DASH client starts
out in state s, takes action a, and ends up in state s′, it updates
Q(s, a) as:

Q(s, a) ← (1− α)Q(s, a) + α[R(s, a, s′) + γmaxaQ(s′, a′)]
(4)

where α is the learning rate. When state s is observed, the Q
matrix, or the particular row in the matrix for state s, is used to
make the decisions in the following way: choose the action that
provides the maximum value based on the current estimates in
Q for most of the time, but a random action the rest of the
time. We use the Boltzmann distribution function [17] to make
a balance between maximum value decision (exploitation) and
random decision (exploration):

f(s, a) =
eQ(s,a)/θ∑
j e
Q(s,aj)/θ

(5)

where f(s, a) is the probability of selecting action a when
in state s, and θ, often referred to as temperature, controls
the degree of randomness in choosing an action. With large
θ, actions will be fairly randomly selected irrespective of the
values in Q, but for a small θ closer to zero, the best action
based on Q values will be selected with high probabilities.
For a DASH client it is useful to begin with a large θ so
the client makes mostly random decisions and learns from its
observations. As it continues to learn, the Q values are used
more often to make the decisions. Our player’s rule is defined
based on Algorithm 1.

IV. EXPERIMENTS SET-UP

A. Network Emulation
Google Chrome’s developer mode provides a network emu-

lator which allows to emulate a variety of network connections,
including DSL, 3G, and even offline. There are several con-
nection type choices to apply network throttling and latency

Algorithm 1
1: Initialize Q to zero
2: Download the first chunk using the lowest quality and observe next

state
3: REPEAT
4: Update Q
5: Calculate Boltzmann probability and use it to select quality q

of next chunk
6: Download the next chunk using quality q and observe next state
7: CONTINUE
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Fig. 1: Bandwidth monitoring on Google Chrome’s network emulator: Regular
3G (µ = 671, σ = 95.9) and regular 4G (µ = 4027, σ = 760.7) - bandwidth
fluctuations (a) , normality check (b)

manipulation. Throttling artificially limits the maximum down-
load throughput and latency manipulation applies a minimum
delay in connection (RTT). Fig. 1 illustrates our observed
bandwidth statistics while using emulated 3G and 4G models
in our experiments. The bandwidth fluctuation in both models
presented in Fig.1a and Fig. 1b show that bandwidth samples
are normally distributed.

B. Video Statistics

To test our MDP-based DASH player, we chose to use
the existing manifest files provided by DASHIF [16]. Table
I presents the available bitrates and resolutions of the two
video clips Big Buck Bunny (in 10 qualities) and Envivo (in
5 qualities) that are used in our experiments over 4G and 3G
networks respectively.

2015 International Telecommunication Networks and Applications Conference (ITNAC)

334Authorized licensed use limited to: University of New South Wales. Downloaded on December 09,2020 at 04:55:53 UTC from IEEE Xplore.  Restrictions apply. 



4

TABLE I: Available quality levels

Big Buck Bunny Envivo
Q Kbps Width Height Kbps Width Height
1 230 1920 1080 350 320 180
2 331 1600 900 600 480 270
3 477 1280 720 1000 704 396
4 688 992 560 2000 1024 576
5 991 768 432 3000 1280 720
6 1427 592 332
7 2056 448 252
8 2962 368 208
9 5027 284 160

10 6000 224 128

TABLE II: Reward function

quality level (q) 1 2 3 4 5 6 7 8 9 10
u(q) 10 20 30 40 50 60 70 80 90 100

C. MDP Parameters
Recall that the tunable MDP parameters allow us to cus-

tomize the streaming quality. In our experiments we used a
deadline miss penalty (D) to penalize the state/action pairs
that cause deadline misses. In our previous study [18] we
presented a wide range of results by tuning D in order to
have fair comparison with different methods. In this study, we
first run the basic DASH player. Then, we run multiple tests
with different D values in our MDP-based player to find such a
setting to achieve Average Quality (AQ) similar to basic DASH
player. By fixing the AQ from both players, we can compare
them based on their total quality changes and deadline misses.
We keep the reward parameters fixed as shown in Table II,
returning higher values for taking higher actions to encourage
the Q-learning algorithm to maximize the AQ. Other MDP
parameters are set as following:

D=100, N = 10 & 5, M = 6, T = 2 2, n = 1, α = 0.9, γ = 0.9,
θ is initiated with 15 and ε = 0.005.

V. RESULTS

In this section we demonstrate the efficiency of MDP-
based DASH player by presenting the empirical results. We
consider the buffer level, number of quality changes and the
number of deadline misses as evaluation metrics. We also
use deterministic and random quality selection strategies as
benchmarks.

A. 3G
We first present results for experiments conducted over the

emulated 3G network with average bandwidth of 671 Kbps.
Note that the lower the buffer level, the higher the deadline
miss risk becomes. Therefore, we compare the buffer level
while streaming the Envivo video clip for all 4 strategies in
Fig. 2 . As observed from Fig. 2a, with the deterministic quality
selection, selecting Q1 and Q2 for the entire streaming session
will result in the maximum possible buffer level (12 seconds)
for most of the times. With Q3 there is a very high risk for

2M = 6 & T = 2 → buffer length = 12 second

deadline miss most of the times while with higher qualities of
Q4 and Q5 the player misses every playback deadlines.

In Fig. 2b, we can see the random strategy achieves similar
result as deterministic quality 3 since the average quality
with random method is close to 3. However, with both basic
and MDP-based DASH players we can observe considerably
higher buffer levels compare to the ones from random and
deterministic quality 3 though their average qualities are also
around 3 (3.09 and 2.78 , Fig 3a). The highest buffer level that
is achieved with our MDP-based DASH player indicates lower
deadline miss risk compare to the benchmarking algorithms.
Presented results are the average over 10 different experiments.

In Fig. 3, we compare the basic DASH and MDP-based
DASH players over three quality dimensions in 10 separate
experiments. Recall that we fix the AQ of these players to
evaluate them based on their number of quality changes and
deadline misses. We found that for very close AQs, the MDP-
based player significantly decreases the number of deadline
misses (1.3 from 24 DM, i.e., 18.5x reduction) (Fig. 3b, f). As
it’s shown in Fig. 3c, the quality fluctuation is also significantly
minimized with our player. On average of 10 tests, the basic
DASH player switches the streaming quality 46.1 times when
MDP-based player only switches 8.1 times (i.e., 5.6x less).
It can be also captured that the basic DASH player does
not provide consistent streaming performance in different tests
compare to our MDP-based player. This can be explained as
the bitrate adaptation in basic DASH player is done based on
network and buffer level conditions which can be different in
each separate test.

B. 4G
Next, we present results for an emulated 4G network (aver-

age bandwidth 4027 Kbps). In Fig. 4 we can see deterministic
qualities of Q9 and Q10 drain the buffer while choosing other
qualities there is lower risk of deadline miss. With random
quality selection strategy we always achieved a high buffer
level. Similar to 3G, MDP-based DASH player guarantees
higher buffer level compared to basic DASH player while their
AQ are very close (7.3 and 7.6).

As we can see from Fig. 5, our player misses only 1.4
deadlines on average of 10 tests which is 32.6 times less
than 45.7 deadline misses from basic DASH player. In term
of quality change, although our MDP-based DASH player
fluctuates the quality 81 times on average of 10 runs which
is more than what we achieved over 3G network, yet it’s
significantly less than basic DASH player with 130 times
quality changes meaning 1.6x less fluctuation. All the results
are achieved over 10 different tests.

VI. CONCLUSIONS

Using the publicly available JavaScript DASH player, we
have created an MDP-based player which enables the video
player to learn from multiple streaming sessions. We used
Google Chrome’s network emulator to empirically evaluate
our player. We have found that comparing to the basic DASH
player, our player can reduce the number of deadline misses by
a factor of 32 over 3G and a factor of 18 over 4G networks. Our
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Fig. 2: Buffer level (average over 10 separate experiments): (a) Deterministic,
(b) Random, (c) basic and MDP-based DASH players - Video clip: Envivo, 5
available qualities ; Network Emulator: Regular 3G

DASH player also decreases the amount of quality fluctuations
of basic DASH player 5x and 32x over 3G and 4G networks
respectively. In next step we will evaluate the performance of
our MDP-based DASH player in real road traffic over real
mobile networks.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update 20142019 White Paper,” [Online accessed
04-June-2015], URL: http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white paper
c11-520862.html.

[2] T. Stockhammer, “Dynamic Adaptive Streaming Over HTTP: Standards
and Design Principles,” in Proceedings of the second annual ACM
conference on Multimedia systems (MMSys), USA, 23 Feb 2011.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

time (s)

A
v
a
ra

g
e
 Q

u
a
lit

y
 (

A
Q

)

 

 

basic (mean = 3.09)

MDP (mean = 2.78 )

(a)

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

test #

#
 D

e
a
d
lin

e
 M

is
s
 (

D
M

)

 

 

basic ( mean = 24.0 )

MDP ( mean = 1.3 )

(b)

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

Test #

#
 o

f 
Q

u
a
lit

y
 C

h
a
n
g
e
 (

Q
C

)

 

 

basic  (mean = 46.1 )

MDP  ( mean = 8.1 )

(c)

Fig. 3: Comparing basic and MDP-based DASH players: (a) Average picture
quality, (b) Deadline misses, (c) Quality change - Network emulator: 3G

[3] T.-Y. Huang, R. Johari, and N. McKeown, “Downton Abbey Without the
Hiccups: Buffer-Based Rate Adaptation for HTTP Video Streaming,” in
Proceedings of the 2013 ACM SIGCOMM workshop on Future human-
centric multimedia networking, Hong Kong, China, 16 August 2013.

[4] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate Adaptation for Adaptive
HTTP Streaming,” in Proceedings of the second annual ACM confer-
ence on Multimedia systems (MMSys’ 11), New York, USA, 23 February
2011.

[5] A. Bokani, M. Hassan, S. Kanhere, and X. Zhu, “Optimizing HTTP-
Based Adaptive Streaming in Vehicular Environment using Markov
Decision Process,” IEEE Transactions on Multimedia (ACCEPTED),
2015.

[6] C. J. Watkins and P. Dayan, “Q-Learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[7] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley.com, 2009, vol. 414.

[8] L. Lam, J. Y. Lee, S. C. Liew, and W. Wang, “A Transparent Rate
Adaptation Algorithm for Streaming Video Over the Internet,” in The

2015 International Telecommunication Networks and Applications Conference (ITNAC)

336Authorized licensed use limited to: University of New South Wales. Downloaded on December 09,2020 at 04:55:53 UTC from IEEE Xplore.  Restrictions apply. 



6

0 5 10 15 20 25 30 35 40 45 600
0

2

4

6

8

10

12

time (s)

B
u
ff
e
r 

le
v
e
l 
(s

)

 

 
Q 1 (mean= 11.85 )

Q 2 (mean= 11.85)

Q 3 (mean= 11.84 )

Q 4 (mean=11.83 )

Q 5 (mean=11.82 )

Q 6 (mean=11.79 )

Q 7 (mean=11.72 )

Q 8 (mean=11.7 )

Q 9 (mean=0.003 )

Q 10 (mean=0 )

7

6
5

4

3

2

1

9 10

8

(a)

0 100 200 300 400 500 600
0

2

4

6

8

10

12

time (s)

B
u
ff
e
r 

le
v
e
l 
(s

)

 

 

Random Quality Selection ( mean= 11.5 )

(b)

0 100 200 300 400 500 600

2

4

6

8

10

12

time (s)

B
u
ff
e
r 

le
v
e
l 
(s

)

 

 

basic ( mean = 3.1 )

MDP  ( mean = 6.8 )

(c)

Fig. 4: Buffer level (average over 10 separate experiments): (a) Deterministic,
(b) Random, (c) basic and MDP-based DASH players - Video clip: Big Buck
Bunny, 10 available qualities ; Network Emulator: Regular 4G

18th International Conference on Advanced Information Networking
and Applications (AINA), Fukuoka, Japan, 29-31 MArch 2004.

[9] J. Yao, S. S. Kanhere, and M. Hassan, “An Empirical Study of
Bandwidth Predictability in Mobile Computing,” in Proceedings of
the third ACM international workshop on Wireless network testbeds,
experimental evaluation and characterization (MobiCom-WiNTECH),
San Francisco, USA, 14-19 September 2008.

[10] P. Deshpande, X. Hou, and S. R. Das, “Performance Comparison of 3G
and Metro-Scale WiFi for Vehicular Network Access,” in Proceedings
of the 10th ACM conference on Internet measurement, Melbourne,
Australia, 13 November 2010.

[11] A. Bokani, “Location-Based Adaptation for DASH in Vehicular Envi-
ronment,” in Proceedings of the 2014 CoNEXT on Student Workshop
ACM ’2014, Sydney, Australia, 2-5 December 2014.

[12] G. Zhong and A. Bokani, “A Geo-Adaptive JavaScript DASH Player,”
in Proceedings of the VideoNEXT ’2014 Workshop on Design, Quality
and Deployment of Adaptive Video Streaming ACM ’2014, Sydney,
Australia, 2-5 December 2014.

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Avarage Quality (AQ)

C
D

F

 

 

basic ( mean = 7.6 )

MDP ( mean = 7.3 )

(a)

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Test #

#
 D

e
a
d
lin

e
 M

is
s
 (

D
M

)

 

 

basic    ( mean = 45.7 )

MDP     ( mean = 1.4 )

(b)

0 1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

Test #

#
 o

f 
Q

u
a
lit

y
 C

h
a
n
g
e
 (

Q
C

)

 

 

basic  ( mean = 130 )

MDP  ( mean = 81 )

(c)

Fig. 5: Comparing basic and MDP-based DASH players: (a) Average quality,
(b) Deadline misses, (c) Quality change - Network emulator: Regular 4G

[13] C. C. Wüst and W. F. Verhaegh, “Quality Control for Scalable Media
Processing Applications,” Journal of Scheduling, vol. 7, no. 2, pp. 105–
117, 2004.
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